Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dairy Sci ; 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38395400

RESUMO

Identifying genome-enabled methods that provide more accurate genomic prediction is crucial when evaluating complex traits such as dairy cow behavior. In this study, we aimed to compare the predictive performance of traditional genomic prediction methods and deep learning algorithms for genomic prediction of milking refusals (MREF) and milking failures (MFAIL) in North American Holstein cows measured by automatic milking systems (milking robots). A total of 1,993,509 daily records from 4,511 genotyped Holstein cows were collected by 36 milking robot stations. After quality control, 57,600 single nucleotide polymorphisms (SNP) were available for the analyses. Four genomic prediction methods were considered: Bayesian Lasso (LASSO), Multiple Layer Perceptron (MLP), Convolutional Neural Network (CNN), and Genomic Best Linear Unbiased Prediction (GBLUP). We implemented the first 3 methods using the Keras and TensorFlow libraries in Python (v.3.9) while the GBLUP method was implemented using the BLUPF90+ family programs. The accuracy of genomic prediction (Mean Square Error) for MREF and MFAIL was 0.34 (0.08) and 0.27 (0.08) based on LASSO, 0.36 (0.09) and 0.32 (0.09) for MLP, 0.37 (0.08) and 0.30 (0.09) for CNN, and 0.35 (0.09) and 0.31(0.09) based on GBLUP, respectively. Additionally, we observed a lower re-ranking of top selected individuals based on the MLP versus CNN methods compared with the other approaches for both MREF and MFAIL. Although the deep learning methods showed slightly higher accuracies than GBLUP, the results may not be sufficient to justify their use over traditional methods due to their higher computational demand and the difficulty of performing genomic prediction for non-genotyped individuals using deep learning procedures. Overall, this study provides insights into the potential feasibility of using deep learning methods to enhance genomic prediction accuracy for behavioral traits in livestock. Further research is needed to determine their practical applicability to large dairy cattle breeding programs.

2.
J Dairy Sci ; 106(4): 2613-2629, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36797177

RESUMO

The number of dairy farms adopting automatic milking systems (AMS) has considerably increased around the world aiming to reduce labor costs, improve cow welfare, increase overall performance, and generate a large amount of daily data, including production, behavior, health, and milk quality records. In this context, this study aimed to (1) estimate genomic-based variance components for milkability traits derived from AMS in North American Holstein cattle based on random regression models; and (2) derive and estimate genetic parameters for novel behavioral indicators based on AMS-derived data. A total of 1,752,713 daily records collected using 36 milking robot stations and 70,958 test-day records from 4,118 genotyped Holstein cows were used in this study. A total of 57,600 SNP remained after quality control. The daily-measured traits evaluated were milk yield (MY, kg), somatic cell score (SCS, score unit), milk electrical conductivity (EC, mS), milking efficiency (ME, kg/min), average milk flow rate (FR, kg/min), maximum milk flow rate (FRM, kg/min), milking time (MT, min), milking failures (MFAIL), and milking refusals (MREF). Variance components and genetic parameters for MY, SCS, ME, FR, FRM, MT, and EC were estimated using the AIREMLF90 software under a random regression model fitting a third-order Legendre orthogonal polynomial. A threshold Bayesian model using the THRGIBBS1F90 software was used for genetically evaluating MFAIL and MREF. The daily heritability estimates across days in milk (DIM) ranged from 0.07 to 0.28 for MY, 0.02 to 0.08 for SCS, 0.38 to 0.49 for EC, 0.45 to 0.56 for ME, 0.43 to 0.52 for FR, 0.47 to 0.58 for FRM, and 0.22 to 0.28 for MT. The estimates of heritability (± SD) for MFAIL and MREF were 0.02 ± 0.01 and 0.09 ± 0.01, respectively. Slight differences in the genetic correlations were observed across DIM for each trait. Strong and positive genetic correlations were observed among ME, FR, and FRM, with estimates ranging from 0.94 to 0.99. Also, moderate to high and negative genetic correlations (ranging from -0.48 to -0.86) were observed between MT and other traits such as SCS, ME, FR, and FRM. The genetic correlation (± SD) between MFAIL and MREF was 0.25 ± 0.02, indicating that both traits are influenced by different sets of genes. High and negative genetic correlations were observed between MFAIL and FR (-0.58 ± 0.02) and MFAIL and FRM (-0.56 ± 0.02), indicating that cows with more MFAIL are those with lower FR. The use of random regression models is a useful alternative for genetically evaluating AMS-derived traits measured throughout the lactation. All the milkability traits evaluated in this study are heritable and have demonstrated selective potential, suggesting that their use in dairy cattle breeding programs can improve dairy production efficiency in AMS.


Assuntos
Indústria de Laticínios , Leite , Feminino , Bovinos/genética , Animais , Teorema de Bayes , Lactação/genética , Fenótipo , Genômica , América do Norte
3.
Environ Pollut ; 230: 1099-1107, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28783897

RESUMO

Over the past decade, studies have shown that exposure to endocrine disrupting chemicals (EDCs) can cause gonadal intersex in fish. Smallmouth bass (Micropterus dolomieu) males appear to be highly susceptible to developing testicular oocytes (TO), the most prevalent form of gonadal intersex, as observed in various areas across the U.S. In this study, prevalence and severity of TO was quantified for smallmouth bass sampled from the St. Joseph River in northern Indiana, intersex biomarkers were developed, and association between TO prevalence and organic contaminants were explored. At some sites, TO prevalence reached maximum levels before decreasing significantly after the spawning season. We examined the relationship between TO presence and expression of gonadal and liver genes involved in sex differentiation and reproductive functions (esr1, esr2, foxl2, fshr, star, lhr and vtg). We found that vitellogenin (vtg) transcript levels were significantly higher in the liver of males with TO, but only when sampled during the spawning season. Further, we identified a positive correlation between plasma VTG levels and vtg transcript levels, suggesting its use as a non-destructive biomarker of TO in this species. Finally, we evaluated 43 contaminants in surface water at representative sites using passive sampling to look for contaminants with possible links to the observed TO prevalence. No quantifiable levels of estrogens or other commonly agreed upon EDCs such as the bisphenols were observed in our contaminant assessment; however, we did find high levels of herbicides as well as consistent quantifiable levels of PFOS, PFOA, and triclosan in the watershed where high TO prevalence was exhibited. Our findings suggest that the observed TO prevalence may be the result of exposures to mixtures of nonsteroidal EDCs.


Assuntos
Bass/fisiologia , Transtornos do Desenvolvimento Sexual/veterinária , Monitoramento Ambiental , Poluentes Químicos da Água/toxicidade , Animais , Bass/metabolismo , Biomarcadores/metabolismo , Disruptores Endócrinos/metabolismo , Estrogênios/metabolismo , Gônadas/efeitos dos fármacos , Indiana , Masculino , Rios/química , Estações do Ano , Vitelogeninas/metabolismo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...